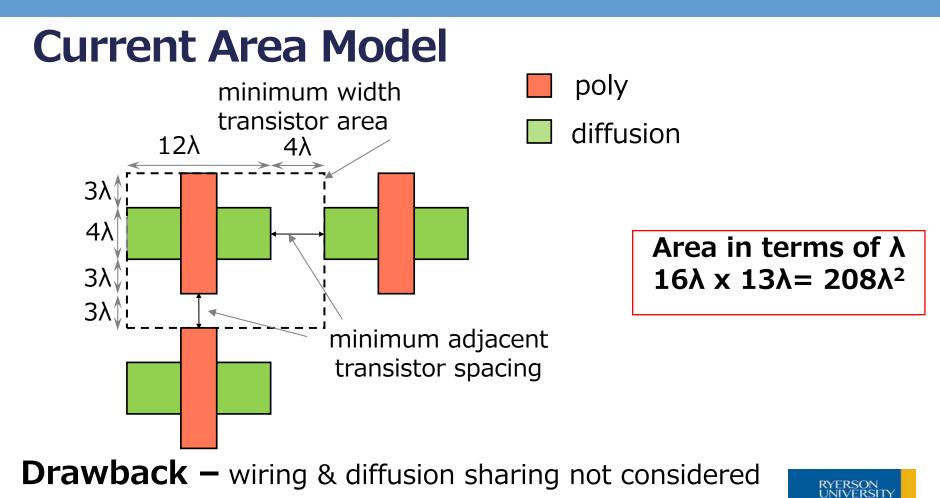
An Evaluation on the Accuracy of the Minimum Width Transistor Area Models in Ranking the Layout Area of FPGA Architectures

Farheen Fatima Khan and Andy Ye Ryerson University, Canada

Motivation

Increasing FPGA based SOC designs


> Reconfigurable fabrics benefit applications

Non-FPGA companies may use FPGA fabric

> Accurate estimation of layout area

> Early floorplanning

FPL 2016

VPR Area Model

> Area(x) = 0.5 + 0.5x

1 mwt = $208\lambda^2$

Area in terms of λ

when x=1 ; 1 mwt -> 208λ² x=2 ;1.5 mwt -> 312λ²

COFFE Area Model

>nMOS transistors

$1 \text{ mwt} = 208\lambda^2$

• Area(x) = $0.447 + 0.128x + 0.391\sqrt{x}$

when x=1 ; 0.97 mwt -> 200.93λ²

>CMOS transistors

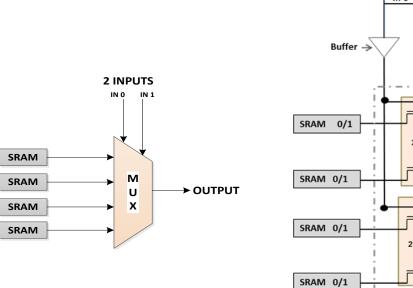
Area(x) = 0.518 + 0.127x + 0.428√x

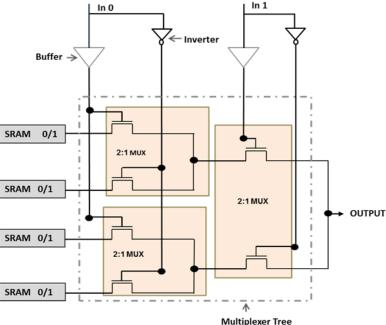
```
when x=1 ; 1.07 mwt -> 223.18λ<sup>2</sup>
```


FPGA building blocks

>nMOS based Components

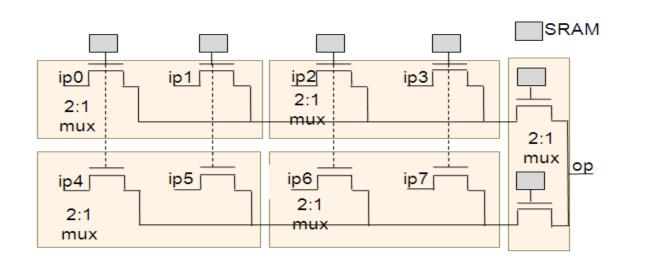
Encoded and Decoded Multiplexers


CMOS based Components


- Buffers
- Full adders

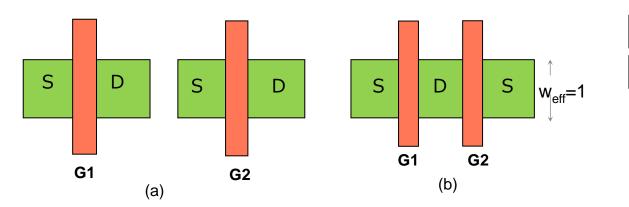
Models accuracy at ranking different FPGA architectures ?

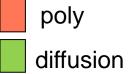
Encoded Multiplexer



- 2:1 LUT
- 4:1 Encoded Multiplexer

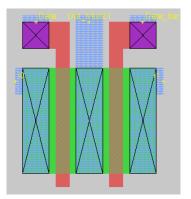
Decoded Multiplexer




• 8:1 Decoded Multiplexer

 two level multiplexer

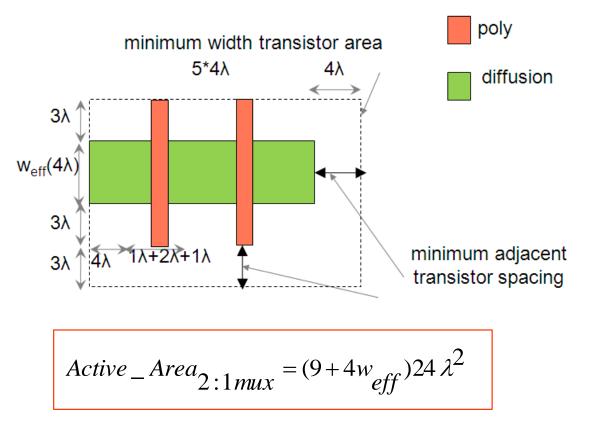
2:1 Multiplexer



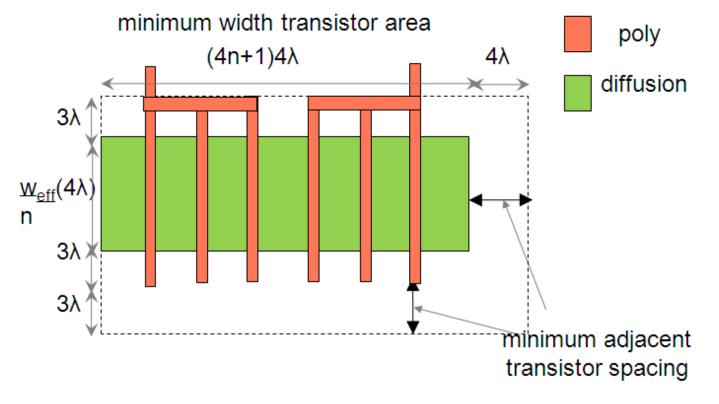


Two discrete transistors Transistors with diffusion sharing

Effect of folding on area

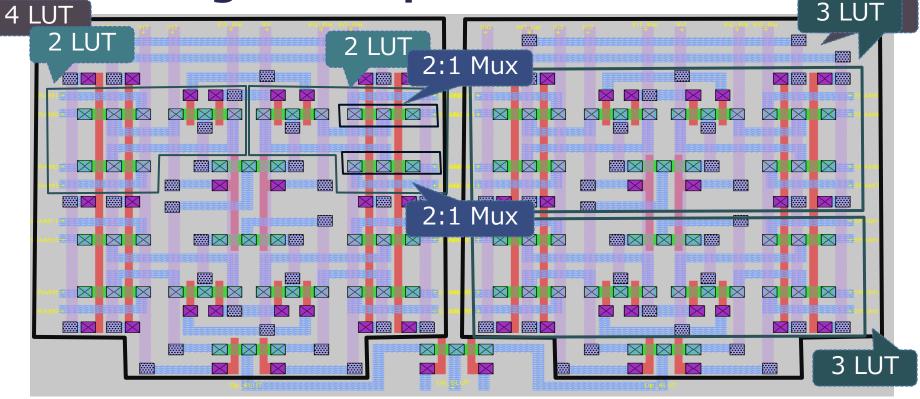


Transistor size	without folding	with 2 folds	with 3 folds
4x	600λ ²	680λ ²	802 λ ²
6x	792λ ²	840λ ²	952λ ²
10x	1176λ²	1160λ ²	1250λ ²
12x	1368λ ²	1320λ ²	1400λ ²


Transistors with small drive strengths

FPL 2016

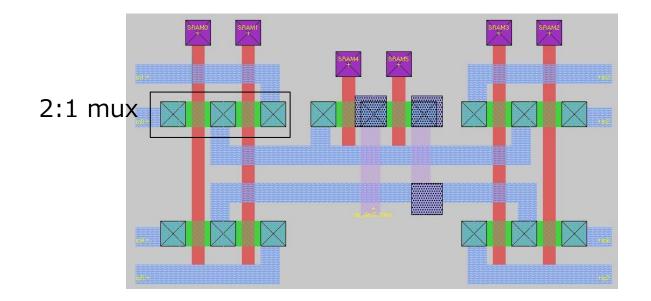
Transistors with large drive strengths


RYERSON UNIVERSITY

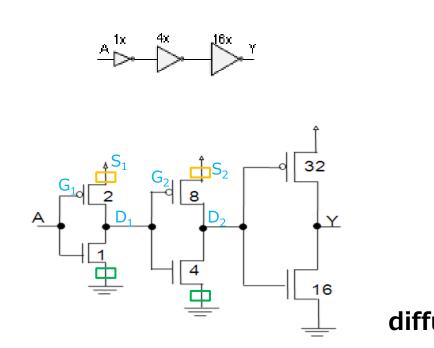
Active_Area_{2:1mux} =
$$\frac{(9n+4w_{eff})(2n+1)8}{n}\lambda^2$$

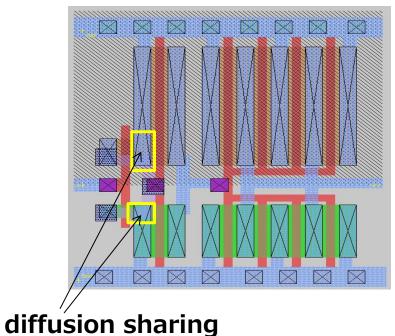
Note, if n=1, the above equation
is the same as previous equation
Active_Area_{2:1mux} = $\frac{(9n+4w_{eff})(2n+1)8\lambda^2}{n\times 208\lambda^2}$ mwt
= $\frac{(9n+4w_{eff})(2n+1)}{26n}$ mwt
= $\frac{(9n+4w_{eff})(2n+1)}{26n}$ mwt
= $\frac{(9n+4w_{eff})(2n+1)}{26n}$ mwt
= $\frac{(9n+4w_{eff})(2n+1)}{26n}$ mwt

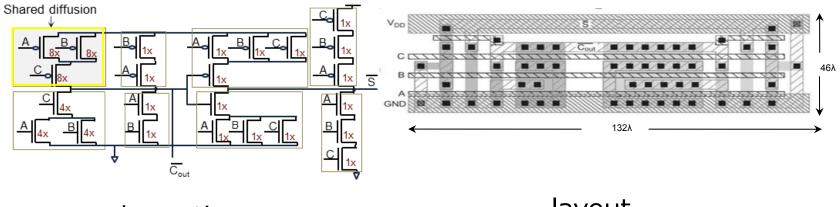
Layout Strategy



Mirroring Technique 5 LUT




Layout strategy for decoded multiplexer


Buffers - Multistage Buffer

Full adder

schematic

layout

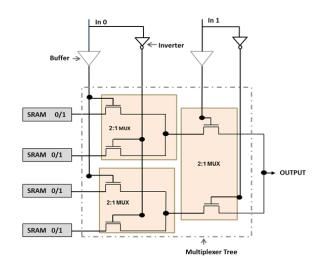
Results

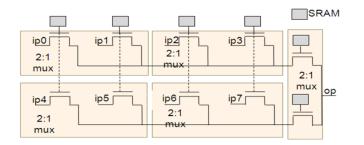
Active area comparisonLayout area

- number of metals used
- Encoded & Decoded multiplexer
 - 1x transistor size
 - .change in transistor size
- CMOS based components
 - buffers and full adder

Active area calculation

> Encoded Multiplexer

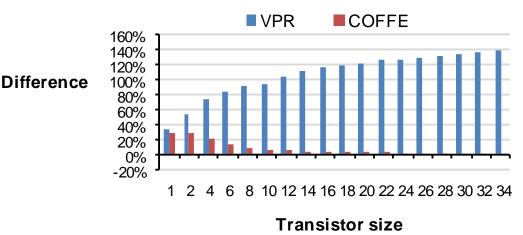

Active
$$_Area_{k-LUT} = (2^{k} - 1)Active _Area_{2:1mux}$$


k is number of inputs to LUT

> Decoded Multiplexer

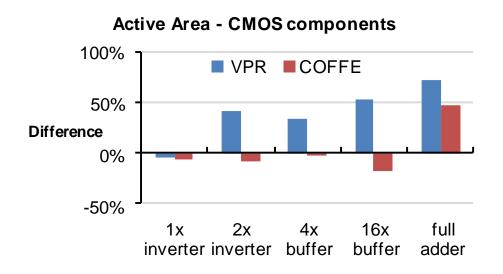
Active_Area_{z:1}
$$dmux = (\frac{z}{2} + 1)Active_Area_{2:1}mux$$

z is number of inputs to decoded multiplexer



Active area comparison – Part I

Active Area - Encoded and Decoded Multiplexers



VPR : overestimates 33% to 139%

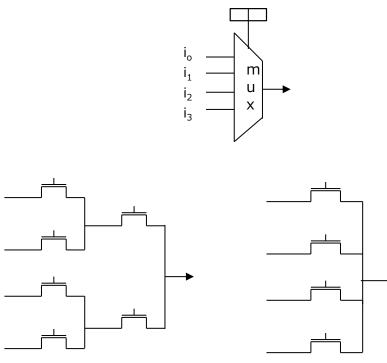
COFFE : - overestimates for 1x - 6x transistor sizes 14% to 29% - very close for large transistor sizes

Part II

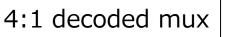
VPR : - underestimates 1x inverter 4%
- overestimates larger inverters, buffers & full adder 72%

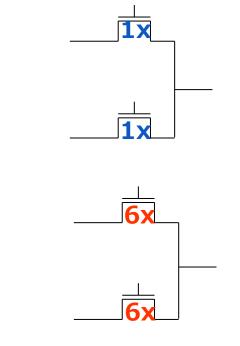
COFFE : - underestimates for inverters 18%

- overestimates for full adder 46%

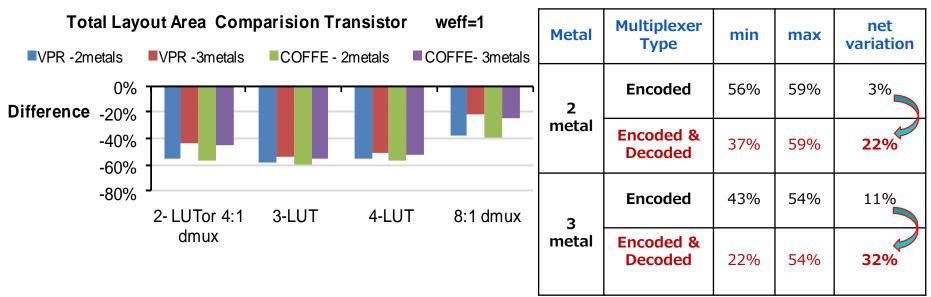

Full layout area metal layers

Example : INTEL 45nm Metal Stack

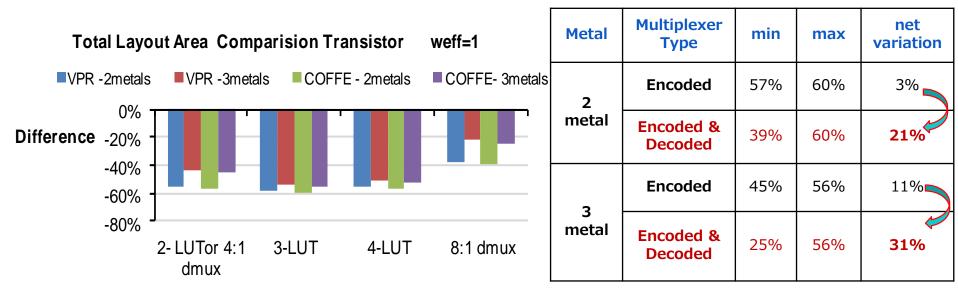

Layer	thickness(nm)	width(nm)	pitch(nm)
M9	7 µm	17.5 µm	30.5 µm
M8	720	400	810
M7	504	280	560
M6	324	180	360
M5	252	140	280
M4	216	120	240
M3	144	80	160
M2	144	80	160
M1	144	80	160


Encoded & Decoded Multiplexer

4:1 encoded mux


Change in transistor size

Multiplexers – 1x transistor size


VPR

Multiplexers – 1x transistor size

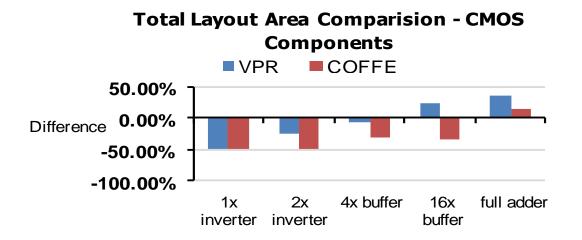
COFFE

Effect of transistor size

VPR

A 4 1 4 1 1

	Metal	Multiplexer Type	min	max	net variation
Total Layout Area Comparision - Transistor weff=6		Encoded 1x	56%	59%	3%
VPR -2metals VPR -3metals COFFE - 2metals COFFE- 3metals	2 metal	Encoded & Decoded 1x	37%	59%	22%
40%] Difference 20% -		Encoded & Decoded 6x	-59%	18%	77%
		Encoded 1x	43%	54%	11%
-20%40%40%	3 metal	Encoded & Decoded 1x	22%	54%	32%
-60% ^J 2- LUTor 3-LUT 4-LUT 8:1 dmux 4:1 dmux		Encoded & Decoded 6x	-54%	31%	85%


.

Effect of transistor size COFFE **Multiplexer** net Metal min max variation Type **Total Layout Area Comparision - Transistor** weff=6 **Encoded 1x** 57% 60% 3% VPR -2metals VPR -3metals COFFE - 2metals COFFE- 3metals Encoded & 2 39% 60% 21% Decoded 1x 40% metal 20% **Encoded &** Difference 27% 60% 33% **Decoded 6x** 0% -20% Encoded 1x 11% 45% 56% -40% **Encoded &** 3 25% 56% 31% -60% Decoded 1x metal 2-LUTor 3-LUT 4-LUT 8:1 dmux 4:1 dmux **Encoded &** 19% 56% 37%

Decoded 6x

FPGA CMOS Components

	min	max	net variation
VPR	-50%	34%	84%
COFFE	-51%	13%	64%

circuit topology and wiring demand differs for CMOS components

Conclusion

Minimum width transistor area model

- analyzed for commonly used FPGA components
- VPR underestimates : encoded multiplexers and small size buffers overestimates : decoded multiplexers with large transistor sizes, large size buffers and full adders.
 - COFFE underestimates : buffers and encoded and decoded multiplexers overestimates : full adders.
- Variation in area is due to
 - different components have different circuit topologies
- > Accurate FPGA area model
 - consider connectivity and grouping of adjacent transistors
 - component by component area model

Thank You.

