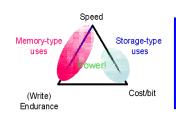
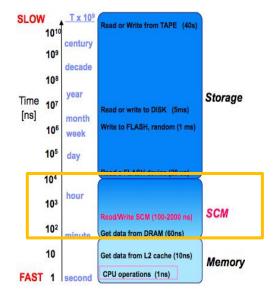
Controller Architecture for Low-latency Access to Phase-Change Memory in OpenPOWER Systems

A. Prodromakis¹, N. Papandreou², E. Bougioukou¹, U. Egger², N. Toulgaridis¹, T. Antonakopoulos¹, H. Pozidis², E. Eleftheriou²

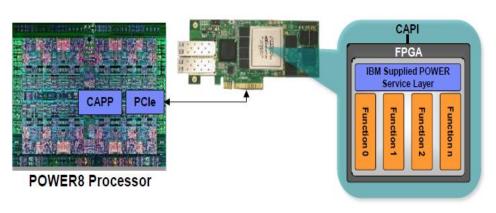
¹University of Patras, 26504 Rio – Patras, Greece ²IBM Research – Zurich, 8803 Rüschlikon, Switzerland


26th International Conference on Field-Programmable Logic and Applications

SwissTech Convention Centre, Lausanne, Switzerland, 29th August – 2nd September 2016 Session S4a: Connectivity, Communication, and Supply Chains


Introduction

- Phase-Change Memory (PCM) is the top contender for realizing Storage Class Memory
 - read latency: faster than NAND (100s of ns vs. 100 of us)
 - write endurance: more than 10⁶ cycles
 - scalable, nonvolatile, true random access
 - multi-bit capability (2016 TLC PCM demonstration by IBM)
- Exploit PCM in the system hierarchy
 - hybrid memory: a combination of DRAM as a small main memory and PCM as the large far memory
 - fast durable storage: PCM is used as a cache for hot data in front of a NAND flash storage pool
- This work presents the architecture, implementation and performance of an FPGA-based PCM memory controller for OpenPOWER systems
- The controller leverages the Coherent Accelerator Processor Interface (CAPI) of the POWER8 processor in order to offer to the CPU low-latency and small granularity access to PCM



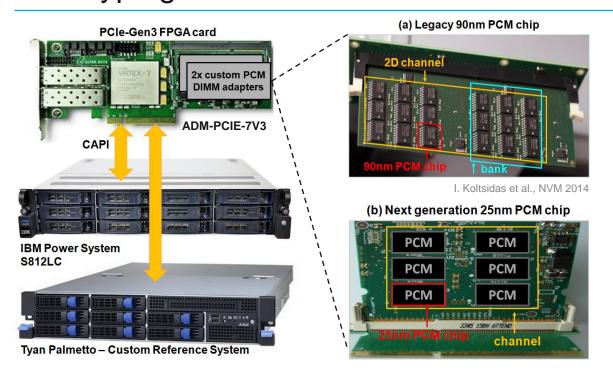
Storage Class Memory

A solid-state memory that blurs the boundaries between storage and memory by being low-cost, fast, and non-volatile.

CAPI and OpenPOWER

I/O flow with Coherent Model

Coherent Accelerator Processor Interface (CAPI)


- CAPI connects a custom acceleration engine to the coherent fabric of the POWER8 chip
- The protocol is sent over the PCIe; Native PCIe Gen3 Support (x16); direct processor integration
- Memory coherency and address translation are handled automatically by CAPI
- CAPI removes the overhead and complexity of the I/O subsystem, allowing an accelerator to operate as an extension of an application

Advantages of CAPI over I/O attachment

- Virtual addressing and data caching (significant latency reduction)
- Easier, natural programming model (avoid application restructuring)
- Enables applications not possible on I/O (e.g. pointer chasing, shared memory semaphores)

Prototyping Platform

IBM Power System S812LC / Tyan Palmetto

8-core 3.32 GHz POWER8 processor 32 GB 1333MHz DDR3 DIMM memory

CAPI enabled PCIe-Gen3 slot

Legacy Micron 90nm PCM chip

128 Mb SLC PCM

SPI compatible serial interface (66 MHz)

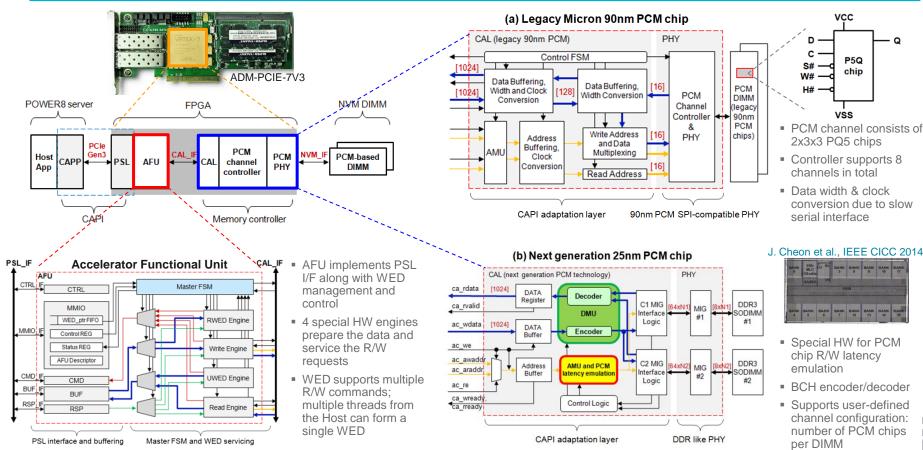
64 bytes R/W access

WRITE access time: 120 usec

READ access time: 100 nsec

Next generation 25nm PCM chip

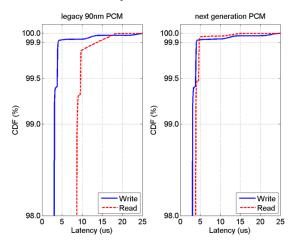
16/32 Gb SLC/MLC PCM


DDR like interface

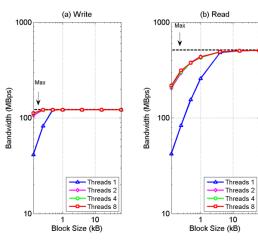
READ access time: 450 nsec

- OpenPOWER servers running Ubuntu 15.10 (IBM Power System S812LC, Tyan Palmetto CRS)
- CAPI-enabled FPGA cards (Alpha Data ADM-PCIE-7V3 Xilinx Virtex 7)
- Custom made PCM DIMMs and adapter cards (legacy 90nm Micron PCM, next generation 25nm PCM)

FPGA Architecture of CAPI-based PCM controller



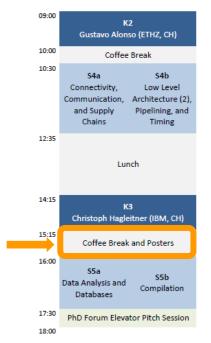
Performance results

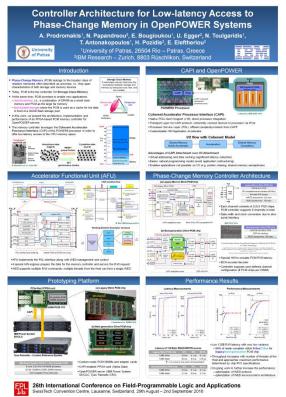

Latency of 128 Byte READ/WRITE access

Legacy 90nm PCM chip	50%	99%	99.9%
128B Write	2.9 us	3.1 us	4.1 us
128B Read	8.6 us	8.8 us	13.8 us
↑ ~ 4.5 us due to chip serial command/data IF			
Next generation PCM chip	50%	99%	99.9%
Next generation PCM chip 128B Write	50% 2.9 us	99% 3.1 us	99.9% 4.1 us

Latency Measurements

Performance Measurements


Next generation PCM technology


- 128B R/W access: low latency with very low variance
 - 99% of reads complete within 8.8us/3.9us for legacy/next generation PCM chip
- Throughput increases with number of threads at the Host and approaches maximum determined by PCM chip PHY
- On going work to further increase the performance:
 - optimization of WED protocol
 - optimization of WED service/control architecture

Poster Session

Wednesday 31st August

For more details and fruitful discussions

visit us at the

Poster Session

Wednesday 31st August 3:15pm – 4:00pm

